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Abstract

MPEG video traffic is expected to cause several problems in ATM networks, both from
performance and from architectural viewpoint. For the solution of these difficulties,
appropriate video traffic models are needed. A detailed statistical analysis of newly
generated long MPEG encoded video sequences is presented and the results are compared
to those of existing data sets. Based on the results of the analysis, a layered modeling
scheme for MPEG video traffic is suggested which will simplify the finding of appropriate
models for a lot performance analysis techniques.
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1 Introduction

In B-ISDNs, a major part of the traffic will be produced by multimedia sources like
teleconferencing terminals and video-on-demand servers. These networks will work on
the basis of ATM and most of the video encoding will be done using the MPEG standard
(ISO Moving Picture Expert Group).

There are a number of open issues concerning the transmission of MPEG video on high-
speed networks like finding of the appropriate ATM adaption layer, dimensioning of the
multiplexer buffers, shaping of video traffic, and monitoring of video cell streams. To
solve these problems several performance analyses has to be done and therefore models
for MPEG video traffic streams have to be developed. The first step of the model deve-
lopment is a thorough analysis of the statistical data sets of already encoded videos.

At institute of Computer Science at Wiirzburg, we encoded a variety of video sequences
and carried out a thorough statistical analysis to get a detailed picture of the video data
stream: moments, histograms, QQ-plots, autocorrelation functions of frame and GOP
sizes, R/S-plots. Based on this information and the knowledge about the MPEG coding
technique, we propose a layered video modeling scheme. The model can consist of GOP,
frame, and cell layer, depending on the requirements of the analysis. For each layer
certain stochastic processes are suggested, which may be used for modeling.

In Section 2, we outline the MPEG video encoding technique. Section 3.1 is about the
statistical analysis of the encoded sequences and in Section 3.2 the layered modeling
scheme is presented. Section 4 concludes the paper.

2 MPEG video encoding

Due to the high bandwidth needs of uncompressed video data streams, several coding
algorithms for the compression of these streams were developed.

At the moment, the MPEG coding scheme is widely used for any type of video appli-
cations. There are two schemes, MPEG-I [7, 6] and MPEG-II [2], where the MPEG-I
functionalities are a subset of the MPEG-II ones. The main difference with respect to
video transmission on ATM is that MPEG-II allows for layered coding. This means the
video data stream consists of a base layer stream, which contains the most important
video data, and of one or more enhancement layers, which can be used to improve the
quality of the video sequence.

In this paper, we focus on one-layer video data streams of MPEG-I type. Most of the
encoders will use this scheme and in case of multi-layer encoding the statistical properties
of the base layer will be almost identical to this type of stream.

The MPEG encoder input sequence consists of a series of frames, each containing a two-
dimensional array of picture elements, called pels. The number of frames per second as
well as the number of lines per frame and pels per line depend on national standards.
For each pel, both luminance and chrominance information is stored. The compression
algorithm is used to reduce the data rate before transmitting the video stream over
communication networks.
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Figure 1: Group of Pictures of an MPEG stream

This is done by both reducing the spatial and the temporal redundancy of the video data
stream. The spatial redundancies are reduced by transforms and entropy coding and
the temporal redundancies are reduced by prediction of future frames based on motion
vectors. This is achieved using three types of frames (cf. Figure 1):

I-frames use only intra-frame coding, based on the discrete cosine transform and entropy
coding;

P-frames use a similar coding algorithm to I-frames, but with the addition of motion
compensation with respect to the previous I- or P-frame;

B-frames are similar to P-frames, except that the motion compensation can be with
respect to the previous I- or P-frame, the next I- or P-frame, or an interpolation
between them.

Typically, I-frames require more bits than P-frames. B-frames have the lowest bandwidth
requirement.

After coding, the frames are arranged in a deterministic periodic sequence, e.g. “IBB-

PBB” or “IBBPBBPBBPBB”, which is called Group of Pictures (GOP).

3 Modeling of MPEG video traffic

There are several reasons to develop models for video traffic and to use them for the
performance analysis of ATM networks.

The first reason is to extract the statistical properties of video traffic which have a
remarkable impact on the network performance. We gain a lot of insight, if we are able to
reduce the statistical complexity of the empirical video data sets. It is true, that only the
frame size trace from the output of a MPEG encoder contains all statistical information
about the encoded video, but on the other hand the large number of properties makes it
difficult to decide which one is causing performance problems.



Movies (buy cassettes)

dino Jurassic Park
lambs The Silence of the Lambs

TV sports events (recorded from cable TV)
soccer Soccer World Cup 1994 Final: Brazil - Ttaly
race Formula 1 car race at Hockenheim/Germany 1994
atp ATP Tennis Final 1994: Becker - Sampras

Other TV sequences (recorded from cable TV)

terminator | Terminator 2

talkl German talk show
talk2 Political discussion
simpsons Cartoon
asterix Cartoon
mr.bean Three slapstick episodes
news German news show
mtv Music clips
Set top camera
settop ‘ Student sitting in front of workstation

Table 1: Overview of encoded sequences

The second reason is the computational complexity of simulations, particularly on cell
level, of ATM networks. It often takes long simulation runs to obtain results of high
accuracy. In some cases the numerical complexity can be considerably reduced using
traffic models and standard analytical tools like matrix analysis or discrete time analysis.

The third reason is the need for connection traffic descriptors for video traffic. If the
traffic model is simple, i.e. it has only a small number of parameters, these parameters
can be used as traffic descriptors for CAC and UPC of video connections.

For the development of video traffic models we can both use the knowledge about the
coding technique, MPEG-I or MPEG-II in our case, and the statistical analysis of the
frame size sequence which we obtain from measurements.

3.1 Statistical analysis of MPEG video sequences

In the following, we will present some statistical measurements from several movies, TV
sport events, and TV shows!, which we encoded at our institute using the UC Berkeley
MPEG-I software encoder [5]. Table 1 shows the sequences which we used to produce
the data sets.

All sequences mentioned below were encoded using the following parameter set:

1To avoid any conflict with copyright laws, we want to point out, that all image processing, encoding,
and analysis work was made for scientific purposes. The encoded sequences have no audio stream and
will not be made publicly available. Only statistical data sets will be made available to colleagues.



Compr. Frames GOPs Bit rate

Sequence | rate Mean | CoV | Peak/ | Mean | CoV | Peak/ | Mean | Peak

X:1 [bits] Mean [bits] Mean | [Mbps| | [Mbps]
asterix 119 22,348 | 0.90 6.6 | 268,282 | 0.47 4.0 0.59 1.85
atp 121 21,890 | 0.93 8.7 262,648 | 0.37 3.0 0.55 1.58
dino 203 13.078 | 1.13 9.1 | 156,928 | 0.40 4.0 0.33 1.01
lambs 363 7,312 | 1.53 184 | 87,634 | 0.60 5.3 0.18 0.85
mr.bean 150 17.647 | 1.17 13.0 | 211,368 | 0.50 4.1 0.44 1.76
mtv 134 19,780 | 1.08 12.7 1 237,378 | 0.70 6.1 0.49 2.71
news 173 15,358 | 1.27 12.4 | 184,299 | 0.47 6.0 0.38 2.23
race 86 30,749 | 0.69 6.6 | 369,060 | 0.38 3.6 0.77 3.24
settop 305 6,031 | 1.92 7.7 72,379 | 0.18 2.0 0.15 0.27
simpsons 143 18,576 | 1.11 12.9 | 222,841 | 0.43 3.8 0.46 1.49
soccer 106 25,110 | 0.85 7.6 | 301,201 | 0.48 3.9 0.63 2.29
starwars 130 15,599 | 1.16 11.9 | 187,185 | 0.39 5.0 0.36 4.24
talkl 183 14,537 | 1.14 7.3 | 174,278 | 0.32 2.7 0.36 1.00
talk2 148 17,914 | 1.02 7.4 | 214,955 | 0.27 3.1 0.49 1.40
terminator 243 10,904 | 0.93 7.3 | 130,865 | 0.35 3.1 0.27 0.74

Table 2: Simple statistics of the encoded sequences
e Each frame consists of one slice;

Quantizer scales: 10 (I), 14 (P), 18 (B);

GOP pattern: IBBPBBPBBPBB (12 frames);

e Encoder input: 384 x 288 pels with 12 bit color information;

e Number of frames per sequence: 40000 (about half an hour of video)

Motion vector search: logarithmic/simple; window: half pel, 10; reference frame:
original;

Some parameters might not be optimal with respect to the quality of the MPEG video

sequence, because of some hardware limitations. We used a Sun Sparc 20 for the image
processing and encoding, and captured the sequence from a VCR with a SunVideo SBus

board.

3.1.1 Overview

Table 2 shows the compression rates and the most important moments of the frame sizes,

the GOP sizes, and the corresponding bit rates of the MPEG sequences.

For the sake of comparison the statistical data from Mark Garrett’s Star Wars sequence
[4] is also presented.




the From Table 2 we conclude, that typical TV sequences like sports, news, and music
clips lead to MPEG sequences with a high peak bit rate and a high peak-to-mean ratio
compared to movie sequences. These properties result from the rapid movements of a lot
of small objects, which increase the amount of data necessary to encode the sequence.

Unfortunately, even the statistical properties of the sequences of the same category, like
movies or cartoons, are not in good agreement. For example, the measurements of termi-
nator and lambs or of simpsons and asterix have no moments lying close together. This
will lead to difficulties in finding traffic classes for MPEG video, which can be used for
CAC and UPC.

In the remainder of this section, we will present a detailed analysis of the statistical data
of the dino, soccer, and starwars sequences.

3.1.2 Frame traces

Figures 3, 4, and 5 show the frame size traces of the dino, soccer, and starwars sequences.
The I frame sizes are light gray, the P frame sizes black, and the B frame sizes dark gray.
The appearance of the three traces is very different. The dino trace is rather smooth,
whereas the other two traces show a large number of rapid changes in the frame sizes of
each type of frames. But although both traces have this property, they look different.
The P frames of the starwars trace are large compared to the I frames. The soccer trace,
however, shows very large changes in any type of frames, and the B frames are often of
the same size as the P frames. This indicates a lot of movement in the input sequence of
the encoder, since the B frames only become large, if the predicted image will be poor
because of the amount of movement and additional data has to be encoded to correct
these prediction errors. This will be the case for soccer matches and for a lot of other
sports events.

3.1.3 Distributions

The Figures 6, 7, and 8 show the frame size histograms of the I, P, and B frames of the
dino sequence. The dashed curve is a Gamma pdf, which has the same mean and variance
as the histogram frame sizes. The good agreement of the histogram and the Gamma curve
for the I and P frames becomes more obvious if we use a QQ-plot (quantile-quantile-plot),
where the Gamma quantiles are plotted against the histogram quantiles. An agreement
with the dotted line indicates that both pdf’s are equal. The solid line is for the Gamma
pdf and the dashed line is for the Lognormal pdf, which has the same parameters as the
Gamma pdf. For the I frame sizes (Figure 9) both the Gamma and the Lognormal pdf
are good to very good approximations of the histogram pdf. In case of the P frames
(Figure 10) the Gamma pdf is in good agreement, whereas for the B frames (Figure 11)
the Lognormal pdf shows better performance.

For almost all encoded sequences, either the Gamma or the Lognormal pdf is an useful
approximation of the frame size histogram pdt’s of either type of frame. The differences
between Gamma and Lognormal approximation performance are not too large in most
cases. Perfect agreement of histogram and approximation cannot be achieved due to
finite frame sizes.



This leads to the conclusion, that for the modeling of the frame sizes, either histograms,
Gamma, or Lognormal pdf’s can be used.

If we look at the GOP size distributions, we obtain similar results. Figures 12, 13, and 14
show the QQ-plot for the dino, soccer, and starwars sequence. Again, the Gamma and
Lognormal quantiles are plotted against the histogram quantiles. For the sequences con-
sidered, the Lognormal distribution is a good approximation of the GOP size histogram,
but the Gamma distribution will also be adequate.

3.1.4 Correlations

Time-dependent statistics are important in the case of video traffic, because correlations
of the data streams may cause performance problems of the ATM network.

First, autocorrelation functions of the frame sizes and of the GOP sizes are presented. The
frame-by-frame correlations are depending on the pattern of the GOP, and, in principle,
always look like Figure 15, if the same GOP pattern is used for the whole sequence. The
larger positive peaks stem from the I frames, the smaller positive ones from the P frames,
and the negative ones from the B frames. This shape reflects the relationship of the
mean frame sizes of the frame types. A large I frame is followed by two small B frames.
Then a midsize P frame is produced by the encoder, which is followed by two small B
frames again. The pattern between two I frame peaks is repeated with slowly decaying
amplitude of the peaks.

If a model is needed which reflects the frame-by-frame correlations of an MPEG video
traffic stream, the GOP-pattern based shape of the autocorrelation function has to be
considered. An approximation of the autocorrelations function is presented in [3].

Based on the frame level correlations, it is difficult to get a clear picture of the long-range
correlations of the video traffic stream. Thus, the autocorrelation functions of the GOP
sizes, 1.e. the sum of the frame sizes of one GOP, are considered.

Figures 16, 17, and 18 show the autocorrelation functions of the GOP sizes of the se-
quences dino, soccer, and starwars. In addition, the dashed line shows the exponential
function, which is matched to the empirical autocorrelation function of the first few lags.
A curve of this type appears if the GOP size process is memoryless. If the autocorrelation
function of the statistical data is above the exponential function, this indicates depen-
dences in the GOP size process. In Figures 16 and 18 this is clearly the case, whereas
the autocorrelation curve and the exponential curve are matching well in Figure 17.

This result makes it difficult to find a GOP layer model which is appropriate for all types of
video sequences. On the other hand, it is often sufficient to have a model which is accurate
in terms of correlations in the order of frames, i.e. tens of milliseconds. Therefore, it
is possible to neglect the GOP-by-GOP correlations and to use only distributions and
moments of the GOP sizes to model the GOP size process, e.g. with a Markov chain,
an autoregressive process, or simply drawing GOP size samples based on the GOP size
histogram.

Another way to detect long-range dependences is to use variance-time plots, R/S plots,
or periodograms [1, 8]. Here, we focus on the R/S plots, because it is a robust method



‘ Sequence ‘ Hurst exponent H

race 0.99
soccer 0.91
lambs 0.89
terminator 0.89
mtv 0.89
simpsons 0.89
talkl 0.89
dino 0.88
atp 0.88
mr.bean 0.85
asterix 0.81
news 0.79
starwars 0.74
talk?2 0.73
settop 0.53

Table 3: Hurst exponents of the encoded sequences

to determine the asymptotic Hurst exponent H of long time series. An introduction in
R/S analysis can be found in [9].

Figures 19, 20, and 21 show the R/S plots, strictly speaking the pox plots, of the frame
size sequences of dino, soccer, and starwars. The slope of the street of points on the
diagrams is an estimate for the Hurst exponent H. The slope is computed using a least
squares fit, where the first row and the last two rows of R/S values is not considered.
The first row may reflect too many short-range dependence effects, and the number of
R/S values of the last row is too small.

The estimated parameter H for the dino sequence is 0.88, for the soccer sequence it is
0.91, and for the starwars sequence 0.74 is estimated. Time series without any long-range
dependences own a Hurst exponent of 0.5, whereas time series of computer traffic can
have H-values up to 1.0 [4]. It is interesting to notice that the soccer sequence has a large
H-value, but that the autocorrelation function of the GOPs is decaying exponentially.

It is assumed, that in case of video traffic a larger H-value reflects a larger amount
of movement in the video sequence [1]. This is corroborated by Table 3 for most of
the encoded sequences. Only the H-values of talkl and starwars do not go with this
assumption. In the case of starwars the H-value is low compared to the other movies.
However, besides the settop sequence, all sequences have H-values, which are higher than
0.73, and the existence of long-range dependencies can be assumed.

If the model of the video traffic should have long-range dependence properties, a class
of processes called fractional differencing processes may be used [4]. These processes
generate time series with given H-values, but it may be difficult to match a given marginal
distribution for the generated samples.



3.2 Layered modeling scheme

In this section, we are going to present a layered modeling scheme for the development

of MPEG video traffic models?.

The main information for the model development which we receive from the MPEG way
of coding can be concluded as follows:

e There are three frame types: I, P, and B frames.

o A pattern of frame types, called GOP, is repeated continuously to create the enco-
ded frame sequence.

o The frames of one single GOP strongly depend on each other.

Moreover, if we want to create a model on cell level, both the AAL which is used for the
transmission of the video and the information, whether the cell stream is shaped before
it enters the network or not, should be taken into account.

Based on the information presented up to this point, we are already able to develop a
scheme with three layers (cf. Figure 2):

e GOP layer,
e Frame layer,

o Cell layer.

At the moment, higher layers, like scenes, are not under consideration for two reasons.
First, each additional layer adds some complexity to the model and we want to have
simple models. Second, in most cases the time scale of one GOP, i.e. about half a
second, is large enough in the ATM context.

Having decided on the layers, we have to define the statistical properties of each layer
and of the way the layers interact.

Based on the results of Section 3.1, we are able to select a stochastic process for each
layer, which is appropriate for our purposes or analysis technique, respectively.

After this step, we have to lay down the way the layers depend on each other.

For example, if we want to generate a frame size sequence based on the GOP size process,
we have to consider the structure of the GOP pattern, which tells us the order of the
types of frames. The simplest way to find the frame sizes based on a GOP size sample
is to use a scaling factor for each frame of the GOP, where the scaling factors are the
mean sizes of the frames of one GOP devided by the mean GOP size of a given data set.
More complex models may use frame size histograms or approximate pdf’s to generate
the frame size sequence (cf. Figure 2).

2An overview of the video modeling literature can be found in [10]
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Figure 2: Layered video traffic modeling scheme



If we want to obtain a cell level model, we have to make up our mind on the way the
frames are broken into cells. This will depend on the considered ATM Adaption Layer
(AAL) and on the existence of shaping facilities between video source and ATM network.
If a statistical analysis of video cell stream measurements is available, it will be possible
to base models directly on this material. This may lead to simpler models for the cell
process.

The presented model development scheme is not a recipe to get a perfect video traffic
model. It is more like an outline of a variety of stochastic modules and the description
how they interact in the case of video traffic. The model developer will have to choose
the modules, which are appropriate for his analysis.

We want to point out, that any model should be validated. Any model, even complex
ones, are based on simplifying assumptions, like independence assumptions. Thus, to
obtain useful and reliable performance analysis results, it is important to know how
these assumptions affect the results of the analysis.

4 Conclusions

Modeling of VBR video traffic is often difficult, because of the statistical complexity of
the empirical data sets, for example their layered structure and the correlations on several
time scales.

In this paper, we present a detailed statistical analysis of new MPEG sequences, which
we encoded at our institute. Each sequence consists of 40000 frames. We were able to
corroborate several results, which are known from the analysis of other video sequences:
1. the frame and GOP sizes can be approximated by Gamma or Lognormal PDF’s, 2.
there are long-range dependences in the frame sequences, which lead to Hurst exponents
from 0.7 up to about 1.0.

The new data sets are also compared to the well known Star Wars data set from Mark
Garrett. It can be concluded that with respect to the statistical properties the Star Wars
sequence is a good representative of the class of MPEG video traffic, but that it will be
misleading to dimension ATM networks based only on this data set. There are sequences
like TV broadcasts of sports events, where performance problems like buffer overflows
are more likely than with the Star Wars sequence.

Based on the statistical analysis, a layered modeling scheme for MPEG video traffic
is presented. We describe the properties of each layer and the way they interact. In
addition, some guidance is given on how to develop video models.
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Figure 9: QQ-plot for the I frame sizes of the dino sequence
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Figure 10: QQ-plot for the P frame sizes of the dino sequence
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Figure 11: QQ-plot for the B frame sizes of the dino sequence
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Figure 12: QQ-plot for the GOP sizes of the dino sequence
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Figure 13: QQ-plot for the GOP sizes of the soccer sequence
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Figure 16: Autocorrelation function of the GOP sizes of the dino sequence
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